Analysis of the dynamic changes in the proportion of immune cells and the proportion of cells with stem cell characteristics in the corresponding immune cell population of C57 mice during the natural aging process.
2021
The aging of the immune system is not only an inevitable result but also an important cause of physical aging. The aging of the immune system is rooted in the aging of hematopoietic cells (HSCs), which manifests as decreasing functionality of the adaptive immune system and the innate immune system. C57BL/6 mice of different ages were collected in this study to better understand the changes in the structures of the innate and adaptive immune systems in individuals of different ages and the distribution and changes in immune cells with stem cell properties. The immune cells of the innate and adaptive immune systems, including DCs, monocytes, macrophages, CD4+ T lymphocytes, CD8+ T lymphocytes, and B lymphocytes, were assessed, and the proportions of cells with stem cell properties among these immune cell populations were also tested. Overall, immune cells in the peripheral blood, spleen, and bone marrow of mice exhibit certain regular properties with increasing age. The trend of changes in immune cells in different immune organs differs with age. The changes in lymphocytes in the peripheral blood are more sensitive. Their proportions increase slowly with age and then decrease rapidly to a very low level (less than 5%) after a certain point (9 or 13 months old). Nine to 13 months of age is the most critical time point for assessing changes in the immune system of mice and the most critical time point for detecting changes in the proportion of stem cells. After 13 months of age, the balance and stability of stem cells in mice are disrupted, and animals begin to age rapidly. The ratio of Ly6A to E+CD117+ cells in the peripheral blood, particularly lymphocytes involved in adaptive immunity, represents a specific marker for predicting immune senescence and body senescence.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
27
References
0
Citations
NaN
KQI