Pore Environment Engineering in Metal-Organic Frameworks for Efficient Ethane/Ethylene Separation
2019
Selective adsorption of trace amount of C2H6 from bulk C2H4 is a significantly important and extemely challenging task in industry, which requires an adsorbent with specific pore properties. Herein, we describe a strategy for adjusting the pore environment of metal-organic frameworks (MOFs) by introducing different amounts of methyl groups in the channel to enhance the guest-host interaction between C2H6 and the framework. To prove this concept, 2,3,5,6-tetramethylterephthalic acid (TMBDC) was delebertely added into a microporous MOF, Ni(BDC)(DABCO)0.5, affording a series of mixed-ligand materials, Ni(BDC)1-x(TMBDC)x(DABCO)0.5 (x = 0, 0.2, 0.45, 0.71, 1) having different pore environments. Significantly, these mixed-ligand materials demonstrated improved performance in terms of the adsorption capacity of C2H6 and C2H4 with an unprecedented C2H6 uptake of 2.21 mmol/g for Ni(TMBDC)(DABCO)0.5 at 0.0625 bar and 298 K. With the best theoretical C2H6/C2H4 selectivity predicted by IAST, the Ni(TMBDC)(DABCO)0.5 exhibited effective separation of C2H6/C2H4 (1/15, v/v) and great recyclability in five consecutive adsorption/desorption cycles throughout the breakthrough experiment.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
52
References
49
Citations
NaN
KQI