Improving Bioactivity of Porous β-TCP Ceramics by Forming Bone-Like Apatite Layer on the Surfaces of Pore Walls

2012 
Bone tissue engineering provides a new way to repair the bone defect in orthopaedics. The scaffolds, porous materials with excellent biocompatibility, bioactivity and biodegradability, play an important role in bone tissue engineering. Furthermore, the bioactivity of the pore interior surfaces is very important for cell attachment, differentiation and growth, as well as new bone tissue ingrowth into pores. In this paper, β-TCP was selected as materials of scaffolds, and its bioactivity was improved by activating the interior surfaces of pore walls. The porous β-TCP scaffolds with about 50~300μm of pore size and above 80% of porosity were obtained by 3D-gel-laminated processing. Their surfaces of the scaffolds were easily covered by a low crystallized bone-like apatite layer, which determined by XRD and FTIR, after immersing in 1.5SBF solution following pre-treatment by NaOH solution. MTT and ALP assays were performed after cells cultured on the porous scaffolds with bone-like structure, and the results showed higher proliferation rate and differentiation level than that on the scaffolds without treatment, which indicated that the porous β-TCP scaffolds with bone-like apatite layer on surfaces of pore walls possess higher bioactivity. Therefore, the bioactivity of tissue engineering scaffolds could be improved by deposited bone-like apatite layer on their surfaces.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    13
    References
    1
    Citations
    NaN
    KQI
    []