Polydopamine and gelatin coating for rapid endothelialization of vascular scaffolds

2021 
Abstract Rapid endothelialization helps overcome the limitations of small-diameter vascular grafts. To develop biomimetic non-thrombogenic coatings supporting endothelialization, medical-grade polyurethane (PU) nanofibrous mats and tubular scaffolds with a diameter below 6 mm prepared by solution blow spinning were coated with polydopamine (PDA), or PDA and gelatin (PDA/Gel). The scaffolds were characterized by scanning electron microscopy, tensile testing, Fourier Transform Infrared spectroscopy, wettability, and coating mass determination. The effect of coating on scaffold endothelialization and hemocompatibility was evaluated using human umbilical vein endothelial cells (HUVECs) and human platelets, showing low numbers of adhering platelets and significantly higher numbers of HUVECs on PDA- and PDA/Gel-coated mats compared to control samples. Tubular PU scaffolds and commercial ePTFE prostheses coated with PDA or PDA/Gel were colonized with HUVECs using radial magnetic cell seeding. PDA/Gel-coated samples achieved full endothelial coverage within 1–3 days post-endothelialization. Altogether, PDA and PDA/Gel coating significantly enhance the endothelialization on the flat surfaces, tubular small-diameter scaffolds, and commercial vascular prostheses. The presented approach constitutes a fast and efficient method of improving scaffold colonization with endothelial cells, expected to work equally well upon implantation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    0
    Citations
    NaN
    KQI
    []