Quantum optical realization of arbitrary linear transformations allowing for loss and gain.

2017 
Unitary transformations are routinely modeled and implemented in the field of quantum optics. In contrast, nonunitary transformations that can involve loss and gain require a different approach. In this theory work, we present a universal method to deal with nonunitary networks. An input to the method is an arbitrary linear transformation matrix of optical modes that does not need to adhere to bosonic commutation relations. The method constructs a transformation that includes the network of interest and accounts for full quantum optical effects related to loss and gain. Furthermore, through a decomposition in terms of simple building blocks it provides a step-by-step implementation recipe, in a manner similar to the decomposition by Reck et al. [Reck et al., Phys. Rev. Lett. 73, 58 (1994)] but applicable to nonunitary transformations. Applications of the method include the implementation of positive-operator-valued measures and the design of probabilistic optical quantum information protocols.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []