PKI-587 enhances chemosensitivity of oxaliplatin in hepatocellular carcinoma through suppressing DNA damage repair pathway (NHEJ and HR) and PI3K/AKT/mTOR pathway.

2019 
Oxaliplatin resistance limits its effectiveness in the treatment of hepatocellular carcinoma (HCC). Abnormal activation of the PI3K/AKT/mTOR pathway has been associated with decreased survival of HCC patients, anti-apoptosis after chemotherapeutic drug-induced DNA damage, and chemoresistance. In this research, we evaluated the effect of the dual PI3K/mTOR inhibitor, PKI-587, on the sensitivity of oxaliplatin in HCC. Two HCC cell lines (HepG2 and SK-Hep1) were used to analyze PKI-587 for DNA damage response, cell proliferation, clonogenic survival, cell cycle and apoptosis after oxaliplatin treatment. A HepG2 tumor-bearing model was used to assess the in vivo effects of the combination of the two compounds. In HCC cells, oxaliplatin stably activated the PI3K/AKT/mTOR pathway, including up-regulation of p-Akt (Ser473), p-mTOR (Ser2448), p-mTOR (Ser2481), p-elF4EBP1, and p-S6K1, and activated the DNA damage repair pathways (non-homologous end joining (NHEJ) and homologous recombination (HR)), up-regulation of p-DNAPKcs (Ser2056), p-ATM (Ser1981), and p-ATR (Ser428), which were attenuated by PKI-587. Compared with oxaliplatin alone, the combination of PKI-587 and oxaliplatin increased the number of γ-H2AX/cells, decreased proliferation of cells, and an increased the percentage of G0/G1 phase cells and apoptotic cells. In vivo, the combination of oxaliplatin with PKI-587 inhibited tumor growth. Anti-tumor effects were associated with induction of mitochondrial apoptosis and inhibition of phosphorylation of mTOR, Akt and γ-H2AX. We conclude that PKI-587 enhances chemosensitivity of oxaliplatin in HCC through suppressing the PI3K/AKT/mTOR signalling pathway and inhibiting the DNA damage repair pathway. The combination of PKI-587 and oxaliplatin appears to be a promising regimen for the treatment of HCC.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    20
    Citations
    NaN
    KQI
    []