Activation of K2P channel–TREK1 mediates the neuroprotection induced by sevoflurane preconditioning

2014 
Background Preconditioning with volatile anaesthetic agents induces tolerance to focal cerebral ischaemia, although the underlying mechanisms have not been clearly defined. The present study analyses whether TREK-1, a two-pore domain K + channel and target for volatile anaesthetics, plays a role in mediating neuroprotection by sevoflurane. Methods Differentiated SH-SY5Y cells were preconditioning with sevoflurane and challenged by oxygen–glucose deprivation (OGD). Cell viability and expression of caspase-3 and TREK-1 were evaluated. Rats that were preconditioned with sevoflurane were subjected to middle cerebral artery occlusion (MCAO), and the expression of TREK-1 protein and mRNA was analysed. Neurological scores were evaluated and infarction volume was examined. Results Sevoflurane preconditioning reduced cell death in differentiated SH-SY5Y cells challenged by OGD. Sevoflurane preconditioning reduced infarct volume and improved neurological outcome in rats subjected to MCAO. Sevoflurane preconditioning increased levels of TREK-1 mRNA and protein. Knockdown of TREK-1 significantly attenuated sevoflurane preconditioning-induced neuroprotective effects in vitro and in vivo . Conclusions Sevoflurane preconditioning-induced neuroprotective effects against transient cerebral ischaemic injuries involve TREK-1 channels. These results suggest a novel mechanism for sevoflurane preconditioning-induced tolerance to focal cerebral ischaemia.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    25
    Citations
    NaN
    KQI
    []