Arbitrary Order Finite Volume Well-Balanced Schemes for the Euler Equations with Gravity

2019 
This work presents arbitrary high order well balanced finite volume schemes for the Euler equations with a prescribed gravitational field. It is assumed that the desired equilibrium solution is known, and we construct a scheme which is exactly well balanced for that particular equilibrium. The scheme is based on high order reconstructions of the fluctuations from equilibrium of density, velocity, and pressure, and on a well-balanced integration of the source terms, while no assumptions are needed on the numerical flux, beside consistency. This technique also allows one to construct well-balanced methods for a class of moving equilibria. Several numerical tests demonstrate the performance of the scheme on different scenarios, from equilibrium solutions to nonsteady problems involving shocks. The numerical tests are carried out with methods up to fifth order in one dimension, and third order accuracy in two dimensions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    5
    Citations
    NaN
    KQI
    []