Sharp approximation theorems and Fourier inequalities in the Dunkl setting

2020 
Abstract In this paper we study direct and inverse approximation inequalities in L p ( R d ) , 1 p ∞ , with the Dunkl weight. We obtain these estimates in their sharp form substantially improving previous results. We also establish new estimates of the modulus of smoothness of a function f via the fractional powers of the Dunkl Laplacian of approximants of f . Moreover, we obtain new Lebesgue type estimates for moduli of smoothness in terms of Dunkl transforms. Needed Pitt-type and Kellogg-type Fourier–Dunkl inequalities are derived.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    0
    Citations
    NaN
    KQI
    []