An electrospun scaffold loaded with anti-androgen receptor compound for accelerating wound healing

2013 
Current dermal regenerative scafolds provide wound coverage, and structural support and guidance for tissue repair, but usually lack enough bio-signals needed for speeding up skin cell growth, migration, wound closure, and skin regeneration. In this study, an androgen receptor (AR) inhibitor called ASC-J9 is used to demonstrate the concept and feasibility of fabricating drug-loaded scafolds via electrospinning. Inhibition of androgen is known to promote skin wound healing. The novel ASC-J9 — loaded porous scafold was fabricated for skin wound repair using electrospun fibers of collagen and polycaprolactone (PCL) blend. Our preliminary results indicated that ASC-J9 — loaded scafolds facilitated more efficient attachment and ingrowth of dermal fbroblasts, compared to the control collagen-PCL scafold. A signifcant increase of cell proliferation was observed with the drug-loaded scafold over a 28-day period. The drug-loaded scafold also accelerated keratinocyte migration and wound closure in a contraction-inhibited mouse wound model over 21 days. The data indicated a sustained release of ASC-J9 from the scafold and its potential to accelerate wound healing by promoting cell proliferation and migration over an extended period of time. More importantly, our results proved the concept and feasibility of fabricating drug-releasing or bioactive dermal scaffolds for more efective wound healing.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    8
    Citations
    NaN
    KQI
    []