Increasing transforming growth factor-beta concentrations with age decrease apelin in the rat rotator cuff.

2021 
BACKGROUND The rotator cuff undergoes natural degeneration with age, leading to age-related rotator cuff tear; however, the precise mechanism remains unclear. Transforming growth factor-beta (TGF-β) concentrations rise with age and TGF-β contributes to the pathophysiology of skeletal muscle. TGF-β has also been shown to suppress expression of the myokine, apelin, in skin fibroblasts. We hypothesized that TGF-β expression in the rotator cuff changes with age and regulates apelin expression, thereby contributing to rotator cuff degeneration. METHODS We used quantitative reverse-transcription polymerase chain reaction (Q-RT-PCR) to measure the expression of apelin and tendon-related genes (Tnmd, Col1a1, and Col3a1) in the rotator cuff of young (12 weeks), adult (24 weeks), and old (48 weeks) rats. Using Q-RT-PCR and enzyme-linked immunosorbent assay, we also measured Tgfb mRNA and TGF-β protein levels, respectively. Furthermore, we used Q-RT-PCR to measure apelin mRNA levels in rotator cuff-derived cells after treatment with 0 (control) and 10 ng/mL recombinant TGF-β. RESULTS Apelin mRNA levels were significantly lower in old compared to young and adult rats. Similarly, tendon-related genes, Tnmd, Col1a1, and Col3a1, were significantly lower in adult and old rats than young rats. In contrast, Tgfb mRNA and TGF-β protein were significantly higher in old compared to young rats. Stimulation with exogenous TGF-β significantly decreased Apelin mRNA expression compared to control. CONCLUSIONS TGF-β regulates apelin expression in the rotator cuff and may play a key role in the degenerative pathology of the rotator cuff with age.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    0
    Citations
    NaN
    KQI
    []