Estimating the dynamics of airborne ascospores of Venturia inaequalis

2000 
A system was elaborated to estimate the dynamics of primary inoculum of Venturia inaequalis in apple orchards. It separates the primary inoculum season into five periods with different risks: absent (ascospores not yet mature); potential (ascospores mature but not yet ready to be discharged); actual (ascospores can be discharged when favourable conditions occur); present (ascospores are airborne); exhausted (all ascospores have been ejected). These periods were determined by two mathematical models, which use meteorological parameters as driving variables. The first model estimates the development stage of the overwintering pseudothecia and then determines when the first pseudothecia contain pigmented and mature ascospores. A threshold of mature ascospores inside pseudothecia defines when the ascospores become ready for discharge. The second model estimates the proportion of the season's ascospores that are airborne on each discharging event, using temperature and leaf wetness, expressed as the degrees accumulated daily in the hours when leaves are wet. Estimates of absent and potential risk were verified by collecting data on the first ascospore discharge in the period 1991/1998 at Bologna and Modena (northern Italy), and they were always found to be accurate. To verify the estimates of actual, present and exhausted risk, the model outputs were compared with data collected by spore samplers at Modena and Bologna in 1997 and 1998: they were sufficiently accurate because the greatest part of the records from the spore sampler fell inside the confidence limits of the model.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    12
    Citations
    NaN
    KQI
    []