Elasticity measurement of breast cancer cells by atomic force microscopy
2014
Mechanical properties of living cells play an important role in understanding various cells’ function and state. Therefore cell biomechanics is expected to become a useful tool for cancer diagnosis. In this study, atomic force microscopy (AFM) using a square pyramid probe was performed to investigate cancerous (MCF-7) and benign (MCF-10A) human breast epithelial cells. The new QI TM mode was used to acquire high-resolution topographic images and elasticity of living cells. Furthermore, individual force curves were recorded at maximum loads of 0.2, 0.5 and 1 nN, and the dependence of cell’s elasticity with loading force was discussed. It was showed that the cancerous cells exhibited smaller elasticity modulus in comparison to non-cancerous counterparts. The elasticity modulus increased as the loading force increased from 0.2 nN to 1 nN. This observation indicates that loading force affects the cell’s apparent elasticity and it is important to choose the appropriate force applied to cells in order to distinguish normal and cancer cells. The results reveal that the mechanical properties of living cells measured by atomic force microscopy may be a useful indicator of cell type and disease.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
14
References
3
Citations
NaN
KQI