A Lightweight Auction Framework for Spectrum Allocation with Strong Security Guarantees

2020 
Auction is an effective mechanism to distribute spectrum resources. Although many privacy-preserving auction schemes for spectrum allocation have been proposed, none of them is able to perform practical spectrum auctions while ensuring enough security for bidders’ private information, such as geo-locations, bid values, and data access patterns. To address this problem, we propose SLISA, a lightweight auction framework which enables an efficient spectrum allocation without revealing anything but the auction outcome, i.e., the winning bidders and their clearing prices. We present contributions on two fronts. First, as a foundation of our design, we adopt a Shuffle-then-Compute strategy to build a series of secure sub-protocols based on lightweight cryptographic primitives (e.g., additive secret sharing and basic garbled circuits). Second, we improve an advanced spectrum auction mechanism to make it data-oblivious, such that data access patterns can be hidden. Meanwhile, the modified protocols adapt to our elaborate building blocks without affecting its validity and security. We formally prove the security of all protocols under a semi-honest adversary model, and demonstrate performance improvements compared with state-of-the-art works through extensive experiments.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    3
    Citations
    NaN
    KQI
    []