Loop quantum deformation of a Schwarzschild black hole: an effective metric

2018 
We consider the modified Einstein equations obtained in the framework of effective loop quantum gravity for spherically symmetric space-times. When one takes into account (only point-wise holonomy) quantum corrections, the deformation of Einstein equations is parametrized by a function f(x) of one variable . We solve explicitly these equations for static black holes and find the effective metric in the region inside the black hole for any f(x). When f(x) is the usual function used in loop quantum gravity, the effective metric presents strong similarities with the Reissner-Nordstrom metric (with a regular trapped region): it tends to the expected Schwarzschild metric when one approaches the outer horizon, and the inner horizon replaces the original Schwarzschild singularity. We discuss the possibility to extend the solution outside the trapped region, and possible phenomenological consequences of our results.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    19
    Citations
    NaN
    KQI
    []