Data on Biomechanics and Elemental Maps of Dental Implants in Rats

2020 
Abstract Implant-bone biomechanics and mechanoadaptation of peri-implant tissue in space (around and along the length of an implant) and time (3-, 11-, and 24-day following implantation) are important for functional osseointegration of dental implants. Spatiotemporal shifts in biomechanics of implant-bone complex in rat maxillae were correlated with maximum principal tension and maximum principal compression profiles in peri-implant tissue using a hybrid model; biomechanics in situ paired with digital volume correlation. Spatiotemporal changes in elemental counts and their association with mineral density of the peri-implant tissue were mapped using electron dispersive X-ray and X-ray fluorescence microprobe techniques. Data provided within are related to biomechanical testing of an implant-bone complex in situ. Data also highlight the power of correlating elemental colocalization with tension and compression regions of the peri-implant tissues to explain spatiotemporal mechanoadaptation of implant-bone complexes. Further interpretation of data is provided in “Mechanoadaptive Strain and Functional Osseointegration of Dental Implants in Rats [1] .”
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    3
    References
    0
    Citations
    NaN
    KQI
    []