Depth Profiling of the Chemical Composition of Free-Standing Carbon Dots Using X-ray Photoelectron Spectroscopy

2018 
The chemical and geometrical structure of free-standing carbon dots (Cdots) prepared from the pyrolysis of N-hydroxysuccinimide (NHS) have been characterized using X-ray photoelectron spectroscopy (XPS). An aerodynamic lens system was used to generate a sufficient particle density of monodispersed Cdots for XPS studies at the PLEIADES beamline at the SOLEIL synchrotron facility. Varying the X-ray excitation energy between 315 and 755 eV allows probing of the Cdots from the surface toward their core, owing to the kinetic energy dependence of the photoelectron inelastic mean free path. The C 1s, O 1s, and N 1s core-levels were recorded with high-spectral resolution to identify their main chemical components and branching ratios. While high-resolution transmission electron microscopy (HRTEM) reveals a defective graphitic core, the C 1s spectrum evidence two main peaks similar to those measured from the solid NHS. Their relative abundance as a function of the probing depth is strongly related to the chemical ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    11
    Citations
    NaN
    KQI
    []