Insulin-like growth factor binding protein-1 activates integrin-mediated intracellular signaling and migration in oligodendrocytes

2010 
J. Neurochem. (2010) 113, 1319–1330. Abstract In multiple sclerosis (MS), oligodendrocytes in lesions are lost, leaving damaged tissue virtually devoid of these myelin-producing cells. Our group has recently demonstrated enhanced expression of insulin-like growth factor (IGF) binding protein-1 (IGFBP-1) in oligodendrocytes (CNPase+) localized adjacent to MS lesions. In the present study, we demonstrate IGF-1-independent actions of IGFBP-1 on OLN-93 oligodendroglial cells, including activation of kinases ERK1/2, focal adhesion kinase and p21-activated kinase as well as small monomeric GTPases Rac and Ral. Activation of these intracellular signaling components was inhibited by GRGDS peptide, indicating signaling through integrin receptors. While both IGF-1 and IGFBP-1 demonstrated rapid induction of actin polymerization, IGFBP-1 proved to be a more potent inducer of migration than IGF-1, inducing a threefold increased migration rate. Furthermore, through integrin receptor signaling IGFBP-1 induced rapid transient translocalization of intracellular Rac toward punctuated structures followed by translocation of Rac to the plasma membrane. Our results suggest that up-regulation of IGFBP-1 in oligodendrocytes in MS may serve two functions: (i) regulate IGF-1 actions, (ii) exert IGF-independent effects through its RGD sequence.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    21
    Citations
    NaN
    KQI
    []