Stratification Anomalies in the Ocean Interior

2020 
Internal waves and vortical mode are ubiquitous in the ocean, providing a conduit for energy transfer from tides and wind-driven circulation to fine- and micro-scale turbulence associated with internal-wave breaking and dissipation. Numerical simulations of a Garrett-Munk internal-wave field are used to study the interactions between internal waves and vortical mode, and the generation of turbulent mixing events and semi-permanent finestructure (vortical mode). Regions of reduced stratification are found to occupy between ~5% and 25% of the model domain, depending on the strength of the anomalies. Decomposition of 3-dimensional model fields into linear internal-wave and vortical-mode components shows that both influence stratification, with ~88% of the anomalies due to linear internal waves and ~40% due to vortical mode, the overlap in percentiles representing regions that are a combination of the two. The time evolution of anomalies is examined, from the initial generation to eventual dissipation. Result...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []