Evolution of Charged Gap Statesin a - Si:H Under Light Exposure

2003 
The charge deep-level transient spectroscopy (Q-DLTS) experiments on undoped hydrogenated amorphous silicon (a-Si:H) demonstrate that during light soaking the states in the upper part of the gap disappear, while additional states around and below midgap are created. Since no direct correlation is observed in light-induced changes of the three groups of states that we identify from the Q-DLTS signal, we believe that we deal with three different types of defects. Positively charged states above midgap are related to a complex formed by a hydrogen molecule and a dangling bond. Negatively charged states below midgap are attributed to floating bonds. Various trends in the evolution of dark conductivity due to light soaking indicate that the kinetics of light-induced changes of the three gap-state components depend on their initial energy distributions and on the spectrum and intensity of light during exposure.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    1
    Citations
    NaN
    KQI
    []