Effect of cyclophosphamide on hematopoietic stem cells in mice with iron overload

2020 
OBJECTIVE: To explore the effect of cyclophosphamide on hematopoietic stem cells (HSCs) in mice with iron overload. METHODS: Mouse models of iron overload were established in 30 male C57BL/6 mice by intraperitoneal injections of iron dextran at low (0.25 g/kg), moderate (0.5 g/kg), and high (1 g/kg) doses (n=10), with another 10 PBS-treated mice as the control group. The changes in body weight, liver, spleen and bone marrow of the mice were recorded, and serum level of ferritin was detected. The mice receiving a moderate dose of iron dextran were further divided into 8 groups for observation at different time points (D1, D2, D3, D4, D5, D6, D7, and D14 groups) and were given intraperitoneal injection of 50 mg/kg cyclophosphamide (Cy) for 2 consecutive days. Peripheral blood cells, bone marrow mononuclear cells (BMMNCs), and the frequencies of different HSCs (HPCs, HSCs, LT-HSCs) in the BMMNCs were monitored. The cell cycle distribution in the HSCs, level of reactive oxygen species and the microenvironment of the HSCs were analyzed using flow cytometry. RESULTS: Compared with the control mice, the mice with iron overload showed obvious weight loss with significantly increased serum ferritin level, enlargement of the liver and spleen, and iron deposition in the organs (P < 0.05). No significant changes were noted in the peripheral blood of the mice with iron overload. The cyclophosphamide-treated mice exhibited significantly decreased number of WBCs and lymphocyte ratio at days 1 to 4 (P < 0.05). The numbers of BMMNCs and HPCs in mice with iron overload did not show significant changes as compared with those in the control mice, but the numbers of HSCs and LTHSCs decreased significantly in the mice with iron overload (P < 0.05). In cyclophosphamide-treated mice, the number of HSCs increased since day 1 and reached the peak level on day 3 (P < 0.05). Compared with those in the control group, the HSCs did not exhibit significant changes in cell cycle distribution in mice with iron overload, but the proportion of G0/G1 cells decreased significantly in cyclophosphamide group since day 1 and reached the lowest level on day 3 (P < 0.05). CONCLUSIONS: Iron deposition in the bone marrow causes long- term damages of the HSCs in the bone marrow but does not induce obvious changes in the peripheral blood. In mice with iron overload, intraperitoneal injection of 50 mg/kg cyclophosphamide for two days promotes cell cycle changes of the resting HSCs to mobilize the HSCs, and this effect is the most obvious on day 4.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    0
    Citations
    NaN
    KQI
    []