Genome editing in mammals and plants using CRISPR type I-D nuclease

2020 
SUMMARY Adoption of the CRISPR-Cas system has revolutionized genome engineering in recent years; however, application of genome editing with CRISPR type I—the most abundant CRISPR system in bacteria—has been less developed. Type I systems in which Cas3 nuclease degrades the target DNA are known; in contrast, for the sub-type CRISPR type I-D (TiD), which lacks a typical Cas3 nuclease in its cascade, the mechanism of target DNA degradation remains unknown. Here, we found that Cas10d—a nuclease in TiD—is multi-functional in PAM recognition, stabilization and target DNA degradation. TiD can be used for targeted mutagenesis of genomic DNA in human cells, directing both bi-directional long-range deletions and short insertions/deletions. TiD off-target effects, which were dependent on the mismatch position in the protospacer of TiD, were also identified. Our findings suggest TiD as a unique effector pathway in CRISPR that can be repurposed for genome engineering in eukaryotic cells.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    1
    Citations
    NaN
    KQI
    []