DNA Hypomethylation of the MPO Gene in Peripheral Blood Leukocytes Is Associated with Cerebral Stroke in the Acute Phase

2021 
Dysregulation of the oxidant-antioxidant system contributes to the pathogenesis of cerebral stroke (CS). Epigenetic changes of redox homeostasis genes, such as glutamate-cysteine ligase (GCLM), glutathione-S-transferase-P1 (GSTP1), thioredoxin reductase 1 (TXNRD1), and myeloperoxidase (MPO), may be biomarkers of CS. In this study, we assessed the association of DNA methylation levels of these genes with CS and clinical features of CS. We quantitatively analyzed DNA methylation patterns in the promoter or regulatory regions of 4 genes (GCLM, GSTP1, TXNRD1, and MPO) in peripheral blood leukocytes of 59 patients with CS in the acute phase and in 83 relatively healthy individuals (controls) without cardiovascular and cerebrovascular diseases. We found that in both groups, the methylation level of CpG sites in genes TXNRD1 and GSTP1 was ≤ 5%. Lower methylation levels were registered at a CpG site (chr1:94,374,293, GRCh37 [hg19]) in GCLM in patients with ischemic stroke compared with the control group (9% [7%; 11.6%] (median and interquartile range) versus 14.7% [10.4%; 23%], respectively, p < 0.05). In the leukocytes of patients with CS, the methylation level of CpG sites in the analyzed region of MPO (chr17:56,356,470, GRCh3 [hg19]) on average was significantly lower (23.5% [19.3%; 26.7%]) than that in the control group (35.6% [30.4%; 42.6%], p < 0.05). We also found increased methylation of MPO in smokers with CS (27.2% [23.5%; 31.1%]) compared with nonsmokers with CS (21.7% [18.1%; 24.8%]). Thus, hypomethylation of CpG sites in GCLM and MPO in blood leukocytes is associated with CS in the acute phase.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    74
    References
    1
    Citations
    NaN
    KQI
    []