Architectural control of metabolic plasticity in epithelial cancer cells.

2021 
Metabolic plasticity enables cancer cells to switch between glycolysis and oxidative phosphorylation to adapt to changing conditions during cancer progression, whereas metabolic dependencies limit plasticity. To understand a role for the architectural environment in these processes we examined metabolic dependencies of cancer cells cultured in flat (2D) and organotypic (3D) environments. Here we show that cancer cells in flat cultures exist in a high energy state (oxidative phosphorylation), are glycolytic, and depend on glucose and glutamine for growth. In contrast, cells in organotypic culture exhibit lower energy and glycolysis, with extensive metabolic plasticity to maintain growth during glucose or amino acid deprivation. Expression of KRASG12V in organotypic cells drives glucose dependence, however cells retain metabolic plasticity to glutamine deprivation. Finally, our data reveal that mechanical properties control metabolic plasticity, which correlates with canonical Wnt signaling. In summary, our work highlights that the architectural and mechanical properties influence cells to permit or restrict metabolic plasticity. To understand the role of architectural environment on metabolic plasticity of cancer cells, Al Masri et al. compare the metabolic activities of cancer cells grown in 2D vs 3D. They find that cells cultivated in 2D are highly glycolytic and dependent on glucose and glutamine for growth, while cells cultivated in 3D have extensive metabolic plasticity, and are able to maintain growth even in glucose or amino acid depleted environment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    62
    References
    4
    Citations
    NaN
    KQI
    []