Autonomous Safe Landing Site Detection for a Future Mars Science Helicopter

2021 
Future Mars Rotorcrafts require advanced navigation capabilities to enable all terrain access for science investigations with long distance flights that are executed fully autonomously. A critical component is the ability to safely land in hazardous terrain as part of a mission, or triggered by an emergency situation. In this paper, we present an advanced navigation system for continuous on-board terrain reconstruction for the purpose of hazard-free landing site detection for the autonomous navigation of a Mars Science Helicopter - a JPL research concept that investigates the feasibility of flying a multi-kilogram science payload at various Mars science locations, with flight ranges of multiple kilometers per flight. Our approach builds on a vision-based perception system that incorporates an on-board visual-inertial state estimator augmented by a laser altimeter (range-VIO), and a structure-from-motion 3D reconstruction approach that uses a single, downward-looking camera to provide dense depth measurements while the vehicle is in motion. Depth measurements are accumulated in a local, robot-centric, multi- resolution elevation map that is analyzed by a landing site detector to extract safe landing areas below the rotorcraft, based on a heuristic that includes slope, roughness and the presence of landing hazards. Detected landing sites are prioritized by an on-board autonomy engine that either selects suitable landing sites for immediate landing maneuvers, or can explore a terrain location as part of a mission in order to find a best landing site in a pre-planned area. We demonstrate and evaluate our approach on simulated data and data acquired with a surrogate unmanned aerial system (UAS) executing flights over relevant terrain.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    0
    Citations
    NaN
    KQI
    []