Phytotoxicity of the chiral herbicide dichlorprop: cross-talk between nitric oxide, reactive oxygen species and phytohormones
2021
Abstract Nitric oxide (NO), reactive oxygen species (ROS), and phytohormones in plants often initiate responses to sources of abiotic stress. However, we have a poor understanding of the cross-talk between NO, ROS, and phytohormones during exogenous chiral auxin-induced phytotoxicity. In this study, the toxicity of the chiral synthetic auxin herbicide dichlorprop (DCPP) to Arabidopsis thaliana, as well as the mutual regulation of NO, hydrogen peroxide (H2O2), superoxide anion (O2.-), and phytohormones at the enantiomeric level was investigated. The ROS production exhibited an enantioselective manner, further, that was positively correlated with the change of the morphological indicators. This confirmed that ROS played an important role in the enantioselective effect of DCPP. The distribution of ROS and NO was partially overlapped, indicating that the production of NO may be affected by ROS, and also related to the degree of plant damage. In terms of phytohormones, the level of salicylic acid (SA), jasmonic acid (JA), and abscisic acid (ABA) in the whole plant increased as the (R)-DCPP concentration applied increased, however, the trend has changed, when the data of leaves and roots was discussed separately. The results revealed that the redistribution of phytohormones may exist between leaves and roots, caused by the joint action of ROS and NO. The differences in the biological activity identified between the two enantiomers in this study enhance our understanding of the toxicity mechanism of exogenous auxin via their effects on phytohormones.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
50
References
0
Citations
NaN
KQI