Scale Dependence of Midlatitude Air–Sea Interaction

2017 
AbstractIt has traditionally been thought that midlatitude sea surface temperature (SST) variability is predominantly driven by variations in air–sea surface heat fluxes (SHFs) associated with synoptic weather variability. Here it is shown that in regions marked by the highest climatological SST gradients and SHF loss to the atmosphere, the variability in SST and SHF at monthly and longer time scales is driven by internal ocean processes, termed here “oceanic weather.” This is shown within the context of an energy balance model of coupled air–sea interaction that includes both stochastic forcing for the atmosphere and ocean. The functional form of the lagged correlation between SST and SHF allows us to discriminate between variability that is driven by atmospheric versus oceanic weather. Observations show that the lagged functional relationship of SST–SHF and SST tendency–SHF correlation is indicative of ocean-driven SST variability in the western boundary currents (WBCs) and the Antarctic Circumpolar Cur...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    54
    Citations
    NaN
    KQI
    []