Structure Transformation of a Luminescent Pillared-Layer Metal–Organic Framework Caused by Point Defects Accumulation

2018 
Pillared-layer metal–organic frameworks (MOFs) are often encountered to “collapse” upon external stimuli due to weak interactions between the layers and the pillars. However, the detailed local structural change, especially the accumulation of defects due to intricately disordered bond dissociations, is not clear due to the complicated and dynamic nature of the collapse. We report a luminescent pillared-layer MOF structure, FDM-22, using zinc dicarboxylates as layers and dipyridyl ligands as pillars, in which three different transformed structures were captured along the increasing number of coordination bond dissociations between zinc metals and pyridine linkers. The transformation is triggered by these local point defect formations in the MOF, which further contribute to the modulation of its luminescence property, as well as prominent change in the morphology and pore distribution of the MOF. Evidenced by Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and X-ray absorption spectroscopy (XAS...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    21
    Citations
    NaN
    KQI
    []