The IMPROVE-1 Storm of 1–2 February 2001. Part III: Sensitivity of a Mesoscale Model Simulation to the Representation of Snow Particle Types and Testing of a Bulk Microphysical Scheme with Snow Habit Prediction

2007 
Abstract A mesoscale model simulation of a wide cold-frontal rainband observed in the Pacific Northwest during the Improvement of Microphysical Parameterization through Observational Verification Experiment (IMPROVE-1) field study was used to test the sensitivity of the model-produced precipitation to varied representations of snow particles in a bulk microphysical scheme. Tests of sensitivity to snow habit type, by using empirical relationships for mass and velocity versus diameter, demonstrated the defectiveness of the conventional assumption of snow particles as constant density spheres. More realistic empirical mass–diameter relationships result in increased numbers of particles and shift the snow size distribution toward larger particles, leading to increased depositional growth of snow and decreased cloud water production. Use of realistic empirical mass–diameter relationships generally increased precipitation at the surface as the rainband interacted with the orography, with more limited increases ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    59
    Citations
    NaN
    KQI
    []