A tactile sensory system of Myxococcus xanthus involves an extracellular NAD(P)(+)-containing protein.

1995 
CsgA is a cell surface protein that plays an essential role in tactile responses during Myxococcus xanthus fruiting body formation by producing the morphogenic C-signal. The primary amino acid sequence of CsgA exhibits homology with members of the short-chain alcohol dehydrogenase (SCAD) family and several lines of evidence suggest that NAD(P)+ binding is essential for biological activity. First, the predicted CsgA secondary structure based on the 3a120P-hydroxysteroid dehydrogenase crystal structure suggests that the amino-terminal portion of the protein contains an NAD(P)+ binding pocket. Second, strains with csgA alleles encoding amino acid substitutions T6A and RlOA in the NAD(P)+ binding pocket failed to develop. Third, exogenous MalE-CsgA rescues csgA development, whereas MalE-CsgA with the amino acid substitution CsgA T6A does not. Finally, csgA spore yield increased -20% when buffer containing 100 nM of MalE-CsgA was supplemented with 10 p~ of NAD+ or NADP+. Conversely, 10 p~ of NADH or NADPH delayed development for -24 hr and depressed spore levels -10%. Together, these results argue that NAD(P)' binding is critical for C-signaling. S135 and K155 are conserved amino acids in the catalytic domain of SCAD members. Strains with csgA alleles encoding the amino acid substitutions S135T or K155R failed to develop. Furthermore, a MalE-CsgA protein containing CsgA S135T was not able to restore development to csgA cells. In conclusion, a&ino acids conserved in the coenzyme binding pocket and catalytic site are essential for C-signaling.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    61
    References
    68
    Citations
    NaN
    KQI
    []