Pressure-Stimulated Supercrystal Formation in Nanoparticle Suspensions

2018 
Nanoparticles can self-organize into “supercrystals” with many potential applications. Different paths can lead to nanoparticle self-organization into such periodic arrangements. An essential step is the transition from an amorphous state to the crystalline one. We investigate how pressure can induce a phase transition of a nanoparticle model system in water from the disordered liquid state to highly ordered supercrystals. We observe reversible pressure-induced supercrystal formation in concentrated solutions of gold nanoparticles by means of small-angle X-ray scattering. The supercrystal formation occurs only at high salt concentrations in the aqueous solution. The pressure dependence of the structural parameters of the resulting crystal lattices is determined. The observed transition can be reasoned with the combined effect of salt and pressure on the solubility of the organic PEG shell that passivates the nanoparticles.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    10
    Citations
    NaN
    KQI
    []