A Shell Finite Element Model for Superelasticity of Shape Memory Alloys

2020 
A finite element formulation for the analysis of large strains of thin-walled shape memory alloys is briefly presented. For the shell model we use a seven-kinematic-parameter model for large deformations and rotations, which takes into account the through-the-thickness stretch and can directly incorporate a fully 3D inelastic constitutive equations. As for the constitutive model, we use a large strain isotropic formulation that is based on the multiplicative decomposition of the deformation gradient into the elastic and the transformation part and uses the transformation deformation tensor as an internal variable. Numerical examples are presented to illustrate the approach.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    2
    Citations
    NaN
    KQI
    []