Exogenous N -acyl homoserine lactones facilitate microbial adhesion of high ammonia nitrogen wastewater on biocarrier surfaces

2018 
Abstract Startup of biofilm process triggered by initial adhesion of bacteria is difficult in high ammonia nitrogen wastewater treatment. In this study, the influence of two commonly used N -acyl homoserine lactones (AHLs), N -Hexanoyl- l -homoserine lactone (C6-HSL) and N -Octanoyl- l -homoserine lactone (C8-HSL), on the adhesion of soluble macromolecules and bacteria in four types of high ammonia nitrogen wastewater to surfaces of model biocarriers (i.e. polystyrene, polyamide and polyethylene terephthalate) was investigated by using a quartz crystal microbalance with dissipation (QCM-D) monitoring technology. Results showed that the adhesion was enhanced by the addition of exogenous AHLs and there was more microbial retention attributed by C8-HSL. Greater deposition amount was generally found on PS and better enhanced performances of the adhesion were found on PA surface. Furthermore, viscoelastic film formed under synchronous high-low salinity and organic content and dominant bacteria of real wastewater determined the role of exogenous AHLs. The method of adding moderate amount of exogenous AHLs into bioreactors has important implications for accelerating the startup process treating high ammonia nitrogen wastewater by biofilm process.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    21
    Citations
    NaN
    KQI
    []