Abstract 1678: Metastatic breast cancer cell phenotype is regulated by autophagy.

2013 
Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC Autophagy is a catabolic process that is tightly regulated during normal cell growth, development, and homeostasis. Although it may be death inducing, it is also an important survival mechanism for cells in stressful environments, including hypoxia, nutrient deprivation, chemical or physical pressure, or detachment from colonies. Considering the stress associated with the process of metastasis, we hypothesized that autophagy may play a role in the ability of breast cancer cells to survive and metastasize. To test this, we first compared cell proliferation after autophagic induction between metastatic breast cancer cell lines (MDA-MB-231 and -435), a non-metastatic breast cancer cell line (MDA-MB-436), and a ‘normal’ breast epithelial cell line (MCF10A). Both metastatic cell lines continued to proliferate following induction of autophagy; however, the non-metastatic and normal cell lines were growth-inhibited. Autophagy was also more rapidly induced by rapamycin in the metastatic cell lines as demonstrated by an increase in LC3II expression. To test the different survival capabilities between metastatic and normal cells, we selected cells through five rounds of starvation with Earle's balanced salt solution (EBSS) and compared their ability to induce autophagy. Although both the normal and metastatic cells maintained their ability to proliferate under normal conditions, the MDA-MB-231 cells that survived starvation (231-EB5) proliferated more rapidly than the parental population following induction of autophagy. In contrast, both MCF10A and MCF10A-EB5 cells were growth-inhibited. The 231-EB5 cells induced autophagy more rapidly than the parental population as demonstrated by increased expression of LC3II (analyzed by immunoblot) and increased LC3 puncta (analyzed by immunofluorescence). Migration of parental 231 cells was inhibited by rapamycin; however, there was no change in the ability of 231-EB5 cells to migrate after treatment with rapamycin. Growth in three dimensions also was significantly altered. MCF10A-EB5 cells were more extended compared to the spherical growth of the parental MCF10A cells. Protrusions emitted from the 231-EB5 cells were more rounded compared to the extended spikes of the parental 231 cells. Altogether, these results demonstrate that select populations derived from metastatic breast cancer cells have different abilities to survive, proliferate, and migrate following induction of autophagy, suggesting that autophagy may be a key mechanism for tumor progression and metastasis. Citation Format: Yi Li, Monica J. Lewis, Jianzhong Liu, James J. Cody, Douglas R. Hurst. Metastatic breast cancer cell phenotype is regulated by autophagy. [abstract]. In: Proceedings of the 104th Annual Meeting of the American Association for Cancer Research; 2013 Apr 6-10; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2013;73(8 Suppl):Abstract nr 1678. doi:10.1158/1538-7445.AM2013-1678
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []