Relation of chemical structure to spatial distribution of sensory responses in rat olfactory epithelium

1996 
1. Electroolfactogram (EOG) recordings were made in three configurations from the rat olfactory epithelium. Each configuration compared recordings in the dorsomedial recess of the epithelium with recordings in ventral or lateral parts of the epithelium. Most comparisons were made with simultaneous recordings. The exception was a series in which the dorsal recess and lateral space between the base of two turbinate bones were directly exposed for odor application and recording. The spatial distributions of maximal responses were largely independent of recording configuration. 2. Simultaneous recordings compared dorsomedial and lateral sites in the epithelium during stimulation with a series of 50 odorants. The odorants that evoked larger responses in the lateral sites were usually compounds that lacked oxygen containing functional groups (such as the carbonyl group). This was true for straight chain and cyclic alkanes, for terpine compounds, and for aromatic compounds. The major exception was cineole, a bicyclic compound. All compounds containing ketone groups evoked larger dorsomedial responses. The responses of aldehydes and esters depended upon whether they were attached to aliphatic or aromatic chains. 3. In the three types of preparation, the sites responding best to ketones were in the same expression zone of the epithelium according to published maps for the rat and mouse. The sites responding best to odors without functional groups were in the far lateral or ventral region and corresponded to one of the two most lateral and ventral expression zones. This fact suggests that the receptors in these regions have a preference for particular chemical properties. This level of analysis cannot determine whether all receptors in each zone have a stronger response to certain properties of these odorants or whether each zone contains different proportions of receptors with these properties.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    39
    Citations
    NaN
    KQI
    []