Energy and cost trade-off for computational tasks offloading in mobile multi-tenant clouds

2021 
Mobile cloud computing augments smart-phones with computation capabilities by offloading computations to the cloud. Recent works only consider the energy savings of mobile devices while neglecting the cost incurred to the tasks which are offloaded. We might offload several tasks to minimize the total energy consumption of mobile devices; however, this could incur a huge monetary cost. Furthermore, these issues become more complex in considering the multi-tenant cloud, which is not addressed in literature adequately. Thus, to balance the trade-off between monetary cost and energy consumption of the mobile devices, we need to decide whether to offload the task to the cloud or run it locally. In this article, first, we have formulated a ‘MinEMC’ optimization problem to minimize both the energy as well as the monetary cost of the mobile devices. The ‘MinEMC’ problem is proven to be NP-hard. We formulate a special case with an equal amount of resource requirement by each task for which a polynomial-time solution is presented. Further various policies are proposed, the cloud can employ to solve the general case. Then we proposed an efficient heuristic named ‘Off-Mat’ based on distributed stable matching, the solution for which determines whether the tasks are to be offloaded or not under multi-constraints. We also analyze the complexity of this proposed heuristic algorithm. Finally, performance evaluation through simulation results demonstrates that the Off-Mat algorithm attains high-performance in computational tasks offloading and scale well as the number of tenants increases.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    68
    References
    3
    Citations
    NaN
    KQI
    []