Synergistic effect of defects and porous structure in CoCCHH-CoSe heterogeneous-tube @PEDOT:PSS foam towards elastic supercapacitor with enhanced pseudocapacitances.

2021 
It is still challenging to construct stable 3D energy storage materials at the nanoscale by precise pore structure control and reasonable surface modification. Herein, a novel interwoven porous Co(CO3)0.35Cl0.20(OH)1.10 (CoCCHH)-CoSe heterogeneous-tube @PEDOT:PSS 3D foam with abundant active sites is presented as supercapacitor electrodes. The electrochemical results indicated that the pore structure provides ample space for redox reaction, and increases the number of ion transport channels. Besides, rational surface modification brings about sufficient active sites for redox reaction. The stable, porous PEDOT:PSS foam with a 3D elastic frame exhibited excellent electrical conductivity. Thus, the CoCCHH-CoSe@PEDOT:PSS foam possessed excellent specific capacitance and energy density, due to the synergistic effect of the unique 3D structure and surface defects. The home-made supercapacitor with CoCCHH-CoSe@PEDOT:PSS foam as cathode materials showed high specific capacitance (440.6F g-1 at 1 A g-1) and excellent energy density (137.7 Wh kg-1). This work provides a valuable strategy to develop potential materials for electrochemical energy storage.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    0
    Citations
    NaN
    KQI
    []