Energy-Efficient ICI Mitigation with Dynamic and Location-Based Power Allocation in Mobility-Based 5G HetCN
2020
This paper proposes a power allocation mechanism for the HetCNs which is both dynamic and location-based. This mechanism could be adopted for both macrocells (MCs) and superimposed fixed or mobile small cells (SCs) to mitigate the inter-cell interference (ICI) effects. The proposed power allocation scheme could be termed as Dynamic Power Allocation based on User Location (DPAUL) mechanism, which dynamically changes the transmit power of serving base stations (BSs) depending on the location of users in the cell and then allocates to the concerned BSs. The work illustrates the dynamic downlink interference mitigation occurring within the cells, mainly due to the mobile SCs and mobile users. The Cell-User Mobility model has been adopted in this work, to analyze the mobility of cells and its users within the network. The proposed DPAUL scheme has been compared with some other works, including the author’s previously proposed DPAM mechanism. The proficiency of the proposed scheme on setup network has been investigated with sub 6 GHz and mmWave spectrums, and then effect on performance metrics such as sumrate, user throughput, energy-efficiency, and outage probability have been observed.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
25
References
1
Citations
NaN
KQI