Magnetic disorder in TbAl2 nanoparticles

2015 
The magnetic and thermal properties of TbAl2 nanosized alloys (diameters, 12 nm 20 nm) obtained by high-energy milling are characterised by specific heat, magnetisation and neutron scattering. The specific heat shows that the λ-anomaly at Curie temperature vanishes when the milling time reaches 300 h and its field variation shows a broad peak around 70 K disclosing a disordered magnetic state. The thermal variation of magnetization follows a Bloch process with a decrease of the stiffness constant and a faster demagnetisation with a quadratic exponent instead of the bulk ordinary -dependence. The magnetic moment reduction in the nanosized alloys follows a 1/D dependence, remarking the role of disordered moment surface. The Rietveld analysis of the neutron diffraction patterns indicates a collinear ferromagnetic structure, with a reduction of the Tb-magnetic moment when decreasing the particle size. The temperature dependent overall magnetic signal of nanoparticles is derived from small-angle neutron scattering. A magnetic nanoparticle structure with an ordered ferromagnetic core and a disordered surface layer is proposed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    3
    Citations
    NaN
    KQI
    []