Asymptotic enumeration of lonesum matrices
2021
Abstract We provide bivariate asymptotics for the poly-Bernoulli numbers, a combinatorial array that enumerates lonesum matrices, using the methods of Analytic Combinatorics in Several Variables (ACSV). For the diagonal asymptotic (i.e., for the special case of square lonesum matrices) we present an alternative proof based on Parseval's identity. In addition, we provide an application in Algebraic Statistics on the asymptotic ML-degree of the bivariate multinomial missing data problem, and strengthen an existing result on asymptotic enumeration of permutations having a specified excedance set.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
20
References
1
Citations
NaN
KQI