Non-genomic modulation of dopamine release by bisphenol-A in PC12 cells

2003 
An endocrine disruptor chemical, bisphenol-A (BPA), is reported to have several short-term actions in various tissues and/or cells; however, the mechanisms of these actions have not been fully elucidated. We investigated short-term actions evoked by BPA in pheochromocytoma PC12 cells. BPA elicited dopamine release in PC12 cells in a dose-dependent manner. A selective N-type calcium channel antagonist (ω-conotoxin GVIA) and a ryanodine receptor blocker (ryanodine) inhibited the BPA-induced dopamine release. The expression of ryanodine receptor mRNA was detected by RT–PCR in PC12 cells. Subsequently, in order to prove whether membrane receptors participate in BPA-evoked dopamine release, a guanine nucleotide-binding protein inhibitor [guanosine 5′-(β-thio) diphosphate], cyclic AMP antagonist (Rp-cAMPS) or protein kinase A inhibitor (H7 or H89) was added to PC12 cells prior to BPA-treatment. All of these agents suppressed BPA-evoked dopamine release, indicating that multiple signaling pathways may be involved in BPA-evoked dopamine release in PC12 cells. In conclusion, we demonstrated that BPA induced dopamine release in a non-genomic manner through guanine nucleotide-binding protein and N-type calcium channels. These findings illustrate a novel function of BPA and suggest that exposure to BPA influences the function of dopaminergic neurons.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    34
    Citations
    NaN
    KQI
    []