Tracking mesenchymal stem cells with iron oxide nanoparticle loaded poly(lactide-co-glycolide) microparticles.

2012 
Monitoring the location, distribution and long-term engraftment of administered cells is critical for demonstrating the success of a cell therapy. Among available imaging-based cell tracking tools, magnetic resonance imaging (MRI) is advantageous due to its noninvasiveness, deep penetration, and high spatial resolution. While tracking cells in preclinical models via internalized MRI contrast agents (iron oxide nanoparticles, IO-NPs) is a widely used method, IO-NPs suffer from low iron content per particle, low uptake in nonphagocytotic cell types (e.g., mesenchymal stem cells, MSCs), weak negative contrast, and decreased MRI signal due to cell proliferation and cellular exocytosis. Herein, we demonstrate that internalization of IO-NP (10 nm) loaded biodegradable poly(lactide-co-glycolide) microparticles (IO/PLGA-MPs, 0.4–3 μm) in MSCs enhances MR parameters such as the r2 relaxivity (5-fold), residence time inside the cells (3-fold) and R2 signal (2-fold) compared to IO-NPs alone. Intriguingly, in vitro a...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    116
    Citations
    NaN
    KQI
    []