Hybrid lipid polymer nanoparticles for combined chemo- and photodynamic therapy

2019 
Retinoblastoma is a malignant tumor of the retina in infants. Conventional therapies are associated to severe side effects and some of them induce secondary tumors. Photodynamic therapy (PDT) thus appears as a promising alternative as it is nonmutagenic and generates minimal side effects. The effectiveness of PDT requires the accumulation of a photosensitizer (PS) in the tumor. However, most porphyrins are hydrophobic and aggregate in aqueous medium. Their incorporation into a nanocarrier may improve their delivery to the cell cytoplasm. In this work, we designed biodegradable liponanoparticles (LNPs) consisting of a poly(d,l)-lactide (PDLLA) nanoparticle coated with a phospholipid (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine/1,2-dioleoyl-3-trimethylammonium-propane) bilayer. An anticancer drug, beta-lapachone (β-Lap) and a PS, m-THPC, were co-encapsulated for combined chemo- and PDT because it has been suggested that they may have a synergistic effect based on the activation of β-Lap by PDT-induced ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    110
    References
    5
    Citations
    NaN
    KQI
    []