User Assignment in C-RAN Systems: Algorithms and Bounds

2018 
In this paper, we investigate the problem of mitigating interference between so-called antenna domains of a cloud radio access network (C-RAN). In contrast to previous work, we turn to an approach utilizing primarily the optimal assignment of users to central processors in a C-RAN deployment. We formulate this user assignment problem as an integer optimization problem and propose an iterative algorithm for obtaining a solution. Motivated by the lack of optimality guarantees on such solutions, we opt to find lower bounds on the problem and the resulting interference leakage in the network. We thus derive the corresponding Dantzig–Wolfe decomposition, formulate the dual problem, and show that the former offers a tighter bound than the latter. We highlight the fact that the bounds in question consist of linear problems with an exponential number of variables and adapt the column generation method for solving them. In addition to shedding light on the tightness of the bounds in question, our numerical results show significant sum-rate gains over several comparison schemes. Moreover, the proposed scheme delivers similar performance as weighted minimum mean squared-error (MMSE) with a significantly lower complexity (around 10 times less).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    2
    Citations
    NaN
    KQI
    []