Biomechanical Stimuli Effects on Valve Endothelial Cell Anti-thrombotic Mechanisms

2012 
Abstract Because of the degeneration and thrombosis in artificial heart valve implants, it is important to understand the anti-thrombotic mechanisms of cardiac valve endothelial cells (VECs). These anti-thrombotic mechanisms can be integrated into poly(ethylene glycol) diacrylate (PEGDA) tissue-engineered heart valve (TEHV) design. This work will study the effects of (1) PEGDA hydrogel stiffness and (2) specific extracellular matrix (ECM) adhesive peptides on VEC phenotype and anti-thrombotic mechanisms. PEGDA 10% (w/v) hydrogels of MWs 3.4 and 20kDa were polymerized to apply different substrate rigidities in VEC culture. Thiol-ene reactions were used to covalently bind laminin- and fibronectin- derived peptides to the acrylate groups on PEGDA hydrogel surfaces. Laminin-derived peptide motif RKRLQVQLSIRT (RKR) and fibronectin adhesive peptide RGD were modified to include an additional cysteine at the end of each sequence, introducing a free thiol to undergo the thiol-ene reaction. Thiol-PEG-fluorescein (S...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []