Creating reproducible thoracolumbar burst fractures in human specimens: an in vitro experiment

2016 
OBJECT The treatment of traumatic burst fractures unaccompanied by neurological impairment remains controversial and ranges from conservative management to 360° fusion. Because of the heterogeneity of fracture types, classification systems, and treatment options, comparative biomechanical studies might help to improve our knowledge. The aim of the current study was to create a standardized fracture model to investigate burst fractures in a multisegmental setting. METHODS A total of 28 thoracolumbar fresh-frozen human cadaveric spines were used. The spines were dissected into segments (T11–L3). The T-11 and L-3 vertebral bodies were embedded in Technovit 3040 (cold-curing resin for surface testing and impressions). To simulate high energy, a metallic drop tower was designed. Stress risers were used to ensure comparable fractures. CT scans were acquired before and after fracture. All fractures were classified using the AO/OTA classification. RESULTS The preparation and embedding of the spine segments worked...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    2
    Citations
    NaN
    KQI
    []