Bridge to zero-emission: Life cycle assessment of CO2–methanol conversion process and energy optimization
2021
ABSTRACT CO2-conversion technology provides both CO2 emission reduction and new value chains and is now becoming a key player in moderating global temperature increase. In this study, CO2-methanol synthesis processes are evaluated through life cycle assessment. Four conversion processes are selected to represent different technological readiness level (TRL) groups. Coal gasification and coking conversion process for high TRL while hydrogenation and photocatalytic conversion process represent mid and low TRL. Coal gasification conversion shows the highest global warming potential (GWP) with 17.7 kg CO2 eq, followed by hydrogenation conversion, and coal coking conversion. Photocatalytic conversion showed the lowest GWP with 2.28 kg CO2 eq. The mid-to-low TRL conversion processes are analyzed by varying heat and electric sources. Through variation, feasibility of reducing CO2 emission to low-TRL level is confirmed. Although emission reduction sensitives upon energy sources are varied, hydrogenation conversion process reduced the GWP from 10.7 to 1.65 kg CO2 eq. Through the study, it is verified that hydrogenation conversion could be a bridge to green methanol until technological development of photocatalytic conversion, an acceleration to zero-emission.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
43
References
0
Citations
NaN
KQI