Modeling Interindividual Differences in Spontaneous Internal Desynchrony Patterns

2013 
A physiologically based mathematical model of a putative sleep-wake regulatory network is used to investigate the transition from typical human sleep patterns to spontaneous internal desynchrony behavior observed under temporal isolation conditions. The model sleep-wake regulatory network describes the neurotransmitter-mediated interactions among brainstem and hypothalamic neuronal populations that participate in the transitions between wake, rapid eye movement (REM) sleep, and non-REM (NREM) sleep. Physiologically based interactions among these sleep-wake centers and the suprachiasmatic nucleus (SCN), whose activity is driven by an established circadian oscillator model, mediate circadian modulation of sleep-wake behavior. When the sleep-wake and circadian rhythms are synchronized, the model simulates stereotypically normal human sleep-wake behavior within the limits of individual variation, including typical NREM-REM cycling across the night. When effects of temporal isolation are simulated by increasin...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    75
    References
    16
    Citations
    NaN
    KQI
    []