Development of siRNA Payloads to Target KRAS-Mutant Cancer

2014 
RNA interference (RNAi) is a powerful tool for target identification and can lead to novel therapies for pharmacologically intractable targets such as KRAS. RNAi therapy must combine potent siRNA payloads with reliable in vivo delivery for efficient target inhibition. We employed a functional "Sensor" assay to establish a library of potent siRNAs against RAS pathway genes and show they efficiently suppress their targets at low dose. This reduces off-target effects and enables combination gene knockdown. We administered Sensor siRNAs in vitro and in vivo and validated the delivery of KRAS siRNA alone and siRNA targeting the complete RAF effector node (A/B/C-RAF) as promising strategies to treat KRAS-mutant colorectal cancer. We further demonstrate that improved therapeutic efficacy is achieved by formulating siRNA payloads that combine both single-gene siRNA and node-targeted siRNAs (KRAS+PIK3C-A/B). The customizable nature of Sensor siRNA payloads offers a universal platform for combination target identification and development of RNAi therapeutics.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    69
    Citations
    NaN
    KQI
    []