Binding interaction of allethrin with esterase: Bioremediation potential and mechanism.

2020 
Abstract The main aim of this work was to study the allethrin binding interactions with esterase and its bioremediation potential using an isolated bacterial strain CW7, identified as Pseudomonas nitroreducens. The degradation conditions with strain CW7 were optimized using response surface methodology at pH 7.0, a temperature of 32 °C, and an inocula concentration of 150 mg·L-1, with 96% allethrin degradation observed over 7 days. The kinetic parameters qmax, Ks, and Ki were calculated to be 0.512 day-1, 4.97 mg·L-1, and 317.13 mg·L-1, respectively. Nine intermediate metabolites were identified after analysing the degradation products by gas chromatography-mass spectrometry. Strain CW7 effectively degraded a wide variety of pyrethroids as a carbon source. Molecular modeling, docking, and enzyme kinetics were used to investigate the binding pocket of the esterase containing amino acids such as alanine, arginine, valine, proline, cysteine, glycine, isoleucine, phenylalanine, serine, asparagine, and threonine, which play active roles in allethrin degradation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    44
    Citations
    NaN
    KQI
    []